Carbon nanotube Schottky diodes using Ti-Schottky and Pt-Ohmic contacts for high frequency applications.
نویسندگان
چکیده
We have demonstrated Schottky diodes using semiconducting single-walled nanotubes (s-SWNTs) with titanium Schottky and platinum Ohmic contacts for high-frequency applications. The diodes are fabricated using angled evaporation of dissimilar metal contacts over an s-SWNT. The devices demonstrate rectifying behavior with large reverse bias breakdown voltages of greater than -15 V. To decrease the series resistance, multiple SWNTs are grown in parallel in a single device, and the metallic tubes are burnt-out selectively. At low biases these diodes showed ideality factors in the range of 1.5 to 1.9. Modeling of these diodes as direct detectors at room temperature at 2.5 terahertz (THz) frequency indicates noise equivalent powers (NEP) potentially comparable to that of the state-of-the-art gallium arsenide solid-state Schottky diodes, in the range of 10(-13) W/ radical Hz.
منابع مشابه
Properties of short channel ballistic carbon nanotube transistors with ohmic contacts.
We present self-consistent, non-equilibrium Green's function calculations of the characteristics of short channel carbon nanotube transistors, focusing on the regime of ballistic transport with ohmic contacts. We first establish that the band line-up at the contacts is renormalized by charge transfer, leading to Schottky contacts for small diameter nanotubes and ohmic contacts for large diamete...
متن کاملSchottky-to-Ohmic crossover in carbon nanotube transistor contacts.
For carbon nanotube transistors, as for graphene, the electrical contacts are a key factor limiting device performance. We calculate the device characteristics as a function of nanotube diameter and metal work function. Although the on-state current varies continuously, the transfer characteristics reveal a relatively abrupt crossover from Schottky to Ohmic contacts. We find that typical high-p...
متن کاملLayer dependence and gas molecule absorption property in MoS2 Schottky diode with asymmetric metal contacts
Surface potential measurement on atomically thin MoS2 flakes revealed the thickness dependence in Schottky barriers formed between high work function metal electrodes and MoS2 thin flakes. Schottky diode devices using mono- and multi-layer MoS2 channels were demonstrated by employing Ti and Pt contacts to form ohmic and Schottky junctions respectively. Characterization results indicated n-type ...
متن کاملThe performance of in situ grown Schottky-barrier single wall carbon nanotube field-effect transistors.
Electrical transport measurements were used to study device behavior that results from the interplay of defects and inadvertent contact variance that develops in as-grown semiconducting single wall carbon nanotube devices with nominally identical Au contacts. The transport measurements reveal that as-grown nanotubes contain defects that limit the performance of field-effect transistors with ohm...
متن کاملTuning from thermionic emission to ohmic tunnel contacts via doping in Schottky-barrier nanotube transistors.
Electrical power >1 mW is dissipated in semiconducting single-walled carbon nanotube devices in a vacuum. After high-power treatment, devices exhibit lower on currents and intrinsic, ambipolar behavior with near-ideal thermionic emission from Schottky barriers of height one-half the band gap. Upon exposure to air, devices recover p-type behavior, with positive threshold and ohmic contacts. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nano letters
دوره 5 7 شماره
صفحات -
تاریخ انتشار 2005